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C ontrary to predictions that changes in climate are going to cause forest, 
cropland, and rangeland productivity to decline over time, recent data 
show that the known fertilizing effect of additional carbon dioxide 

(CO2)—which is literally food for plants—has offset many of the predicted 
adverse effects by enhancing drought tolerance and plant growth. From 
record harvests for virtually all crops in recent years and a flat, long-term 
trend in forest fires, real observations show that innovations in crop genetics, 
pest control, and water management, in addition to modifications of timber 
harvest and fire-suppression practices, are mitigating the predicted adverse 
effects of increased greenhouse gases and ensuring the future productivity of 
these ecosystems.

The benefits we derive from healthy and productive ecosystems are critical 
to economic prosperity. Important ecological goods and services include the 
market commodities that originate from forest habitats, such as food, fuel, 
timber, and fresh water, but they also include the food from croplands and 
rangelands as well as the recreational and esthetic value that undeveloped 
landscapes provide. Any and all threats to these ecological goods and services, 
including those that may come from future increases in global temperature 
caused by our use of fossil fuels, must therefore be taken seriously.1

In forest, cropland, and rangeland ecosystems, increased risk to plant 
species of all kinds is perceived to come from predicted increases in summer 
heat waves and associated drought conditions. While it is known that 
increased carbon dioxide (CO2) levels have already caused better growth 
rates and improved water management in virtually all plant types (including 
trees, food crops, and rangeland grasses), some models predict that these 
benefits will be overwhelmed in the future by drought conditions of unprec-
edented severity.2
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Predictions of increased risk of forest fires due to climate change have 
also been advanced. An abundance of drought-killed and pest-killed trees 
is often blamed for causing larger and more intense fires in recent years, 
and computer models predict that these events could get worse over time 
as global temperatures increase.3

This Special Report examines the evidence surrounding these claims. 
Historical context is critical here as are the often-ignored potential for other 
human causes and the beneficial effects of human innovation. Extreme 
weather conditions with devastating effects—driven in part by completely 
natural, long-term climate cycles, short-term El Niño Southern Oscillation 
events, and decadal-level cycles in solar radiation—are nothing new to U.S. 
ecosystems. At issue is whether a slight rise in global temperature caused 
by greenhouse gas emissions might worsen such natural events and, if so, 
whether the most adverse effects can be alleviated.4

Farms and Croplands

Croplands in the southern Great Plains (Kansas, Oklahoma and Texas) 
are expected to be most at risk of the worst adverse effects of high tempera-
tures and drought conditions caused by future increases in CO2 emissions 
from the burning of fossil fuels. However, historic records and proxy data 
indicate that droughts are nothing new to U.S. ecosystems. Moreover, 
the natural responses of plants as well as human innovation—including 
improved irrigation methods and regulations, strategic use of fertilizers, 
and the never-ending development of resilient crop varieties—will likely 
continue to offset any potentially harmful effects of climate change on crop 
yield and quality as they have since the 1930s.5

Drought and Water Management. Droughts that adversely affect eco-
systems are periods with abnormally low soil moisture due to increased 
evaporation and decreased precipitation, which the Intergovernmental 
Panel on Climate Change (IPCC) calls “agricultural and ecological drought.”6 
Proxy evidence from tree rings over the past 2,000 years compared to his-
torical records indicates that drought conditions much more severe than 
those that plagued parts of the contiguous U.S. in the 1930s, 1950s, and early 
2000s—lasting three decades or more—occurred in the late 1200s and late 
1500s as a result of natural climatic variation and that 1930s-like drought 
conditions have occurred repeatedly over the past 400 years.7

The IPCC expects with “medium to high confidence” that extreme heat 
and severe droughts will occur more frequently over the next seven decades 
and that demand for limited water supplies in the western U.S. in particular 
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could adversely impact agricultural operations. Irrigation of crops, espe-
cially the hay and corn used to feed cattle and pigs, puts the heaviest demand 
on water supplies, while domestic and commercial users draw significantly 
less. In the western U.S., from Wyoming to California, water from the 
Colorado River drainage is the most fought-over because it is critical to 
so many stakeholders; shortages in 2022 drove tempers especially high. 
However, future innovations in irrigation systems and the availability of 
more drought-tolerant and heat-tolerant crop varieties could reduce this 
usage considerably.8

While it remains to be seen whether more frequent and severe droughts 
will put even more pressure on water supplies in the western U.S. than has 
been seen historically, it has been pointed out that state-imposed and feder-
ally imposed water laws often hinder conservation measures and limit the 
ability to move water to where it is most needed. Effective water manage-
ment has been an issue in the western U.S. at least since the early 1900s, and 
the fact that the numbers of people and domestic livestock on the landscape 
have increased markedly over the past 100 years is almost certainly a bigger 
part of the problem than is human-caused climate change. However, at least 
twice over the past 400–1,000 years, wild bison herds in the tens of millions 
and perhaps as many Native Americans vied for dwindling water supplies 
when catastrophic drought events occurred—a reminder that such compe-
tition is nothing new. Thoughtful water policy has considerable potential to 
offset future scarcities, whether naturally caused or human-caused.9

Range Shifts and Crop Yields. The IPCC predicts with “high confi-
dence” that future human-caused climate change will shift the ranges in 
North America where crucial food crops can be grown, which it says may 
intensify some harvest losses.10 Such range shifts have already been docu-
mented in Canada where a growing season that is two to five weeks longer 
relative to 1950 is already benefitting Alberta and Saskatchewan farmers, 
enabling them to grow fast-maturing varieties of corn and soybeans prof-
itably where they could not have done so in the past.11

In the U.S., drought and heat waves rather than range shifts are the main 
climate-associated concerns: It is predicted that lack of soil moisture and 
daytime temperatures that are much higher than usual could stress even 
heat-loving crops like corn, potentially reducing their yield at harvest.12

So far, however, the warming experienced in recent decades either has 
improved harvest yields because of higher minimum temperatures (warmer 
nights) or has had no overall effect. In the Midwest, the severe drought 
of 2012 reduced yields for corn by only 13 percent compared to 2011 and 
soybeans by 3 percent. By contrast, in the southeastern U.S., an increased 
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average temperature of 1 degree Celsius between 1980 and 2020 signifi-
cantly improved corn and rice yields and had no effect on wheat. Altogether, 
across the U.S., major crop yields have continued to increase since the 1960s 
despite continually increasing CO2 emissions and recent drought condi-
tions.13 (See Chart 1 and Chart 2.)

In another example, a study published in October 2023 used computer 
models to predict that by 2050, drought and high temperatures could 
somewhat reduce crop yields for European hops used in the fast-growing 
beer market. Media outlets promoted this as a threat to future beer drink-
ing, but the largest producers of hops worldwide are in the U.S., where 
yields have been increasing steadily since 2012 despite (and perhaps 
because of ) steadily increasing global CO2 levels. Virtually all U.S. hops 
are grown in the Pacific Northwest, and 2021 was a bumper year. Yields 
in 2022 were slightly lower because of cold spring weather unrelated to 
climate change.14
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SOURCE: Global Change Data Lab, Our World in Data, “Rice: Yield,” https://ourworldindata.org/explorers/ 
crop-yields?facet=none&country=~USA&hideControls=false&Crop=Rice&Metric=Actual+yield (accessed 
September 17, 2024).

IN TONNES PER HECTARE

CHART 1

U.S. Rice Crop Yields
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In contrast to the pessimistic predictions offered by academics, the 
people who actually grow hops have forecasted a modest boost in U.S. hops 
production over the next decade and a significant increase in European 
production. Such forecasts make sense because modern farmers do not 
sit around waiting for adverse conditions to decimate their yields: Since 
the 1930s, farmers increasingly have turned to innovations in irrigation, 
fertilizers, crop rotation, and especially genetics, which produce all kinds 
of crops that are resistant to disease, drought, and high temperatures. (See 
Chart 2.) Climate-based models do not take future agricultural innova-
tions like these into account. The reality is that increased crop resilience 
due to human innovation is likely to intensify in future decades because 
hundreds of years of experience have taught farmers everywhere that 
unforeseen adverse weather and disease can be expected at any time, 
and they had better take what steps they can beforehand to mitigate 
the damage.15
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SOURCE: Global Change Data Lab, Our World in Data, “Corn: Yield,” https://ourworldindata.org/explorers/ 
crop-yields?facet=none&hideControls=false&Crop=Corn+%28maize%29&Metric=Actual+yield&country=~USA 
(accessed September 17, 2024).
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CHART 2

U.S. Corn Crop Yields
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Another aspect of crop futures that is seldom taken into account in 
predictive models is the fertilizing effect of CO2, which is literally food 
for plants. Higher atmospheric concentration of CO2 makes plants grow 
faster and boosts their efficient use of available water. In the future, this 
will at least partially offset the adverse effects of higher than usual daytime 
temperatures and drought conditions that might occur, especially when 
accompanied by innovative crop management measures and the use of 
genetically improved crop varieties.16

Rangelands

Rangelands are grasslands, shrublands, and woodlands that are used for 
grazing domestic livestock, whether on private or public land, and currently 
represent about 42 percent of the total area of the U.S. Rangelands are also 
used by a variety of wild species including economically important stocks of elk 
(Cervus elaphus canadensis); moose (Alces alces); and deer (Odocoileus spp).17

In the contiguous U.S., ecologically distinct rangelands are found east 
of the Rocky Mountains on the Great Plains and west of the Rockies in the 
dry Southwest, including the shrublands of California. Different effects 
of human-caused climate change are predicted depending on the region, 
although much uncertainty is involved. In the Southwest, the possibility 
of adverse effects from more intense or frequent drought events in the 
future is a big worry; in the northern Great Plains, predictions of longer 
and warmer growing seasons are good news because this should result in 
increased habitat and forage for wild and domestic species.18

In other words, greater future CO2 emissions could affect the quality and 
aerial extent of wildlife habitat and forage on rangeland as well as the eco-
nomic viability of these ecosystems for raising domestic livestock. Because 
both directly positive and negative consequences of global warming are 
anticipated, a few examples of more indirect repercussions—from invasive 
weeds and soil erosion—may help to explain why the perceived adverse 
effects on ecosystem goods and services from rangelands are not likely to 
be realized in future decades.19

Invasive Plant Species (Weeds). An increase in the abundance of inva-
sive weeds and grasses is forecasted to become a critical problem in future 
decades for rangelands across the contiguous U.S. Most invasive weeds and 
grasses are not native to North America: Some weed species were intro-
duced by early settlers, and others were brought in either accidentally or 
intentionally.20 As a consequence, most weeds have no natural enemies that 
would normally keep their abundance within bounds.
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Invasive grasses and weeds are resilient species almost by definition. 
They are often less drought-tolerant and more fire-prone with very effec-
tive strategies for rapid growth and reproduction that may include deep or 
expansive roots systems, massive seed production, and self-pollination. In 
addition, the fertilizing effect of recent increases in global CO2 emissions 
that has made trees and crops grow better unfortunately has done the same 
for weeds, and this situation is predicted to get worse over time as emis-
sions increase.21

The superior productivity of weeds makes it difficult for native species to 
compete, which means that weeds can expand quickly. Drought-killed or fire-
killed rangelands or those subjected to overgrazing are often subsequently 
invaded by weedy plants. Some of these species are poisonous, but even 
weeds that are simply unpalatable reduce the yield and quality of nutritious 
forage on rangelands. Weeds may also interfere with effective grazing when 
domestic livestock and wildlife avoid weed-infested areas. For these reasons, 
future increases in the prevalence of weeds on rangelands due to increased 
CO2 emissions could have serious economic and ecological repercussions.22

However, invasive weeds are currently managed with a combination of 
mowing, selective and timely grazing, native grass reseeding, controlled 
burns, and the strategic application of herbicides and natural enemies 
(including species-specific insect and mite pests, collectively known as bio-
control agents). Most weeds can never be truly eradicated, but the expanded 
use of biocontrol agents and herbicides especially shows much promise for 
future management of weeds in the face of increased fossil fuel emissions.23

Soil Erosion. Soil erosion is the natural loss of soil on landscapes due 
to the effects of wind and water. Bare, dry soil can lose nutrients and is 
easily transported by strong winds; surface runoff from intensive down-
pours, such as occur during thunderstorms, can lead to destructive flash 
floods that scour landscapes and precipitate devastating landslides. Much 
of the damage to U.S. soils since the 1970s has come from the overgrazing of 
domestic livestock on rangelands, not the intensive cultivation of croplands, 
exacerbated by drought, that led to extreme erosion during the 1930s.24

In the U.S. Southwest, which is a naturally semi-arid landscape, human-
caused climate change is predicted primarily to cause catastrophic flooding 
as a result of more frequent extreme precipitation events. Such adverse 
effects have the potential to destroy portions of rangeland ecosystems and 
their wildlife inhabitants. However, extreme weather events are locali-
ty-specific and notoriously difficult to predict accurately: The IPCC has 
only low confidence in the likelihood of any increased incidence of heavy 
precipitation.25
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The failure to restore overgrazed rangelands with deliberate planting 
seems to be the primary cause of recent soil erosion and flooding events. 
Fortunately, the solution is relatively simple: reduced grazing intensity 
coupled with purposeful restoration of overgrazed habitats.26

Forests and Wildfire Risk

Extended periods of hot weather and drought create ideal conditions 
for hard-to-fight forest fires. Although climate models predict that such 
weather conditions generated by human-caused global warming will 
increase the incidence of wildfires, recent wildfires cannot be blamed 
exclusively (or even primarily) on global warming: Weather-driven con-
ditions conducive to forest fires have existed for millennia as a result of 
naturally occurring climate cycles. For example, studies have shown that 
over the past 3,000 years, severe fires in the western U.S. occurred during 
the 1800s and the Medieval Warm Period (950–1250 AD), and some of the 
least destructive happened in the mid-20th century and during the Little 
Ice Age (1400–1700 AD).27

Natural climate variability clearly modified historical fire severity, but 
landscape changes and similar human influences—including logging and 
farming practices, firefighting practices, the building of railroad lines and 
electrical grids, domestic livestock grazing, clearing forests for farmland 
and settlements (including modern suburbs), deliberate agricultural 
burning, increased recreational use of back-country landscapes, and the 
intentional or accidental introduction of weedy, non-native grasses and 
shrubs—have affected wildlife behavior as they have changed over time, 
especially since the 1800s.28

The strongest data for assessing modern forest fire severity over time in 
the contiguous U.S. come from the western states (Arizona, California, Colo-
rado, Idaho, Montana, Oregon, New Mexico, Nevada, Utah, Washington, and 
Wyoming), where comparable records go back to 1916. (See Chart 3.) These 
records show that on federal and federally protected lands, fires from 1916 
to the mid-1940s (excluding those caused by arson) were similar in scale 
to fires in the early 2000s. The most acres burned in a given year burned in 
2012, but the second highest number burned in 1919, and some huge fires 
occurred before 1932 that were equal in size to more recent events. Overall, 
there is no obvious trend over time.29

Records show that most forest fires (including arson, unattended camp 
fires, discarded cigarettes, sparks from power lines or machinery, etc.) 
are started by people, whether intentionally or accidentally, and this has 
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largely been true for hundreds of years in North America.30 For example, a 
huge forest fire that blazed through Maine in the fall of 1825 was variously 
blamed on loggers burning slash piles, settlers using fire to clear farmland, 
and federal agents setting fire to the hay cut by illegal loggers as fodder 
for their draft animals, in part because such activities were known causes 
of forest fires at the time.31 By 2021, 75 percent of wildfires in Oregon and 
Washington State were determined to be human-caused, up from the pre-
vious 10-year average of 64 percent.32

Arson is a disturbing subset of human-caused wildland fires, and the 
deliberate intent that defines these fires can be difficult to detect and hard 
to prove. However, records show that arson was a serious issue in several 
southern U.S. states as early as the 1950s when 35 percent–50 percent of 
forest fires were judged to have been started deliberately.33 More recently, 
one study has determined that about 86 percent of all fires in California 

0 

1,000,000 

2,000,000 

3,000,000 

4,000,000 

5,000,000 

6,000,000 

7,000,000 

8,000,000 

20202010200019901980197019601950194019301920

SR299  A  heritage.org

SOURCE: Jon Greenberg, “No, Wildfires Weren’t Bigger in the 1920s and ’30s than Today,” Poynter Institute, 
PolitiFact, October 15, 2021, https://www.politifact.com/factchecks/2021/oct/15/heartland-institute/ 
no-wildfires-werent-bigger-1920s- and-30s-today/ (accessed September 17, 2024).

IN ACRES BURNED EACH YEAR

CHART 3
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since the 1990s have been caused by human activity; other studies put that 
number as high as 95 percent with perhaps 21 percent of these due to arson.34 
Because it takes so long for the judicial system to sort accidental fires from 
intentional ones, it will be years before we have any reliable data on whether 
arson fires have increased over the past decade. Nevertheless, research has 
shown that fires started by people are more ecologically destructive than 
naturally caused fires triggered by lightning because they are more likely 
to start on open, less-forested landscapes and on very dry days with gusty 
winds, which increase a fire’s intensity and ability to spread quickly.35

Some advocates have claimed that increased numbers of pest-killed trees 
caused by human-caused global warming have intensified recent fires, but 
it appears (as explained below) that purposeful changes in human behavior 
have been largely responsible for worsening infestations. Recent epidemics 
of forest pests—including the mountain pine beetle (Dendroctonus pon-
derosae); western pine beetle (Dendroctonus brevicomis); spruce beetle 
(Dendroctonus rufipennis); and western spruce budworm (Choristoneura 
feemani)—have devastated large woodland tracts across the contiguous U.S. 
over the past 40 years, but all of the evidence points to intentional shifts in 
forestry and wildfire-suppression practices as primary causal factors and 
reduced timber harvests and increased fire suppression as having had the 
greatest impact on wildfire behavior since 1980.

Tree Pest Infestations. The tree pests responsible for the recent loss 
of forest trees in the U.S. are largely native species gone rogue. Most are 
host-specific, which makes them ecosystem-specific: Mountain pine beetles 
attack lodgepole and ponderosa pines that are widespread across western 
North America, and spruce beetles go after Engelmann spruce that live in 
more isolated, high-elevation habitats across the western U.S. The southern 
pine beetle (Dendroctonus frontalis) is native to the southeastern U.S. and 
attacks pitch pines and red pines.36

These destructive forest pests have been present in North America for 
millennia: Infestations are not a new phenomenon. Records show that 
epidemics of bark beetle infestations tend to occur every three to 15 years 
or so. In the past, severely cold winters capable of killing these pests have 
partly controlled severe infestations, which is why warmer winters due to 
human-caused climate change are often blamed for recent outbreaks, espe-
cially at higher altitudes and more northerly latitudes. While pest-killed 
trees do provide fuel for wildfires and are often said to be a major contrib-
utor to recent increases in forest fires, at least one study in the western U.S. 
has shown little overlap between these patches of dead trees and major, 
destructive fires.37
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The evidence shows that the trees most at risk for insect infestations are 
slow-growing individuals living in densely packed, mature timber stands, 
primarily because older trees produce less of the resins that help to rebuff 
pests in faster-growing young trees. Because these pests thrive on old trees 
and in forests where trees grow close to one another, reduced or abolished 
logging and increased fire suppression are considered primarily responsible 
for the recent phenomenon of bark beetles spreading farther, more rapidly, 
and more destructively than they did in the past.38

Tree Diseases. Increases in infectious disease that afflict trees most 
often damage or weaken them, making them more susceptible to lethal 
insect infestation. While warmer winters and the stresses induced by 
heat and drought due to human-caused climate change have been blamed 
for an apparent increase in the incidence and spread of tree diseases in 
the U.S. in recent decades, some of the same causes of pest infestation 
discussed above also apply to the spread of disease. As discussed below, 
changes in forestry and fire-suppression practices since the 1980s almost 
certainly have increased the ability of tree diseases to spread more easily. 
And while drought can certainly make trees more susceptible to infection, 
most diseases need a certain level of humidity for survival and effective 
spread, which challenges the plausibility of predictions that we will see 
more adverse effects from tree diseases because of climate change over the 
coming decades.39

Changes in Forestry Practices and Wildfire Suppression. West-
ern U.S. forests live in close association with fire. They are dominated by 
trees in the family Pinaceae, which includes many commercially important 
species of pines, cedars, firs, hemlocks, larches, and spruces, as well as the 
giant redwoods and sequoias of California in the family Taxodiaceae. Their 
normal life cycle is for portions of the forest to burn down periodically, 
perhaps every 100 years or so, with regrowth afterwards. This effectively 
eliminates the old-growth forests that are so susceptible to catastrophic 
pest infestations.40

Since the 1980s, the modern practice of suppressing low-intensity to mod-
erate-intensity fires in such naturally fire-adapted ecosystems has been called 

“maladaptive actions” by the IPCC because they have unintentionally caused 
an increase in large-scale, high-intensity fires that adversely affect those 
ecosystems.41 When left to burn naturally, small to medium-sized wildfires 
generate a “patchwork forest” with trees of various ages and densities, making 
them much more resistant to heavy pest infestation and intense firestorms. 
Selective logging and burning of remnant fuel left after harvest (called 

“slash”), where it can be done and is permitted, has much the same effect.42
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Although the widespread suppression of low-intensity to moderate-in-
tensity fires since the 1980s, together with severe restrictions on logging 
and slash burning, has been largely responsible for the recent increase in 
large-acreage, high-intensity fires in the western U.S., it has become appar-
ent that better forest management would go a long way toward ameliorating 
this pattern.43

Hot, dry weather over the past two decades has been a contributing factor 
for increased wildfires in some regions and perhaps the primary factor in 
others, particularly in southern California shrublands and some steep, sub-
alpine areas of the Rocky Mountains (Colorado and Wyoming) that have 
never been logged or exposed to fire-suppression activities. However, the 
increased incidence of accidental or deliberate human-caused ignition must 
also be factored in, including for remote back-country locations that may 
have been inaccessible in the past.44

Conclusion

More frequent and severe droughts generated by human-caused 
increases in greenhouse gases are the primary concern for future U.S. 
forests, croplands, and rangelands, but drought is nothing new for these 
ecosystems: Drought conditions more severe than the catastrophe of the 
1930s have occurred at least twice in the past 1,000 years and both times 
were due entirely to natural climatic variation. Any future droughts pre-
dicted based on increasing CO2 emissions seem unlikely to exceed these 
devastating conditions, and innovations in genetics and water manage-
ment, as well as the fertilizing effects of CO2 itself, have effectively mitigated 
recent drought events associated with warmer temperatures and reduced 
rainfall. Yields of essential food crops like corn, rice, and wheat—consid-
ered to be the most at risk of calamitous failure—have increased since the 
1960s despite continued increases in CO2. Similarly, because of improved 
management and biological innovation, soil erosion and invasive weeds 
on rangelands and croplands have been less of a problem than predicted 
as global temperatures have risen.

The extensive history of forest fires in the western U.S. shows that they 
have always increased in range and intensity when climatic conditions 
generated drought conditions: Recent severe fire incidents are nothing 
new. However, compared to the early 1900s when large tracts of forests 
last burned extensively, the early 21st century presents many more poten-
tial ignition triggers during times of drought. Despite this, careful analysis 
indicates that the apparent increase in fire severity since the 1980s is due 
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primarily to recent restrictions on timber harvests and increased suppres-
sion of low-intensity and moderate-intensity fires rather than to increased 
global temperatures.

While almost all recent forest fires are ultimately human-caused, arson 
fires are a category apart. Blaming recent forest fires on climate change 
comes with a specific, unique risk. Sentiments conveyed through news and 
social media that recent forest fires are a frightening sign of climate change 
could motivate emotionally unstable activists to set fires deliberately as a 
way to garner media attention and send a stronger message to policymakers. 
Wildfires are exceptional in this regard: One individual could start several 
huge, destructive wildland fires without detection but cannot, for example, 
cause sea ice to decline or sea levels to rise.

Because a demonstrable link between recent fires and rising CO2 levels 
is tenuous at best, as the evidence presented in this Special Report shows, 
climate scientists and their supporters in the media should perhaps avoid 
labeling forest fires as a clear signal of human-caused climate change until 
the evidence supporting such a position is more convincing.
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